IV. Rocket Propulsion Systems

A. Overview

by J. M. Seitzman
for AE 4451 Jet and Rocket Propulsion

Rocket Definition

Rocket ■ Device that provides thrust to a vehicle by accelerating some matter (the *propellant*) and exhausting it from the rocket

- Most significant difference between rocket and air-breathing engines we have examined so far is that the **rocket carries all its own propellant**
Rocket: Performance Issues

- **Thrust**
 - important when there are minimum allowable acceleration requirements, e.g., launch in gravity field

- **Impulse**
 - \[\int F(t) \, dt \]
 - measure of rocket performance normalized by mass of propellant required

- **Other issues**
 - structural weight, size, complexity, reliability,…
Examples: Pressure Rocket

- **Cold Gas Thruster**
 - Cold gas (N₂, hydrazine,...) stored at high pressure with thrust provided by acceleration through nozzle
 - **Propellant=Energy source** (storage pressure)
 - **Feed system:** piping from storage to nozzle
 - **Accelerator:** nozzle (thermal to kinetic energy)

Examples: Chemical Rocket

- **Bipropellant: LH₂-LOX (H₂/O₂)**
 - Combust pressurized H₂ and O₂ in combustion chamber, nozzle exhaust
 - **Propellant=Energy source** (chemical)
 - **Storage:** liquid (cryogenic) tanks
 - **Feed system:** liquid pumps and piping
 - **Energy conversion:** chemical to thermal energy (combustion)
 - **Accelerator:** nozzle
Examples: Electrical Rocket

• Ion Engine
 ⇒ Ionize neutral gas (Xe); ions accelerated by E field; ions recombined with e⁻
 – Propellant: neutral gas
 – Energy source: e.g., nuclear
 – Energy conversion: nuclear to thermal to electrical
 – Accelerator: high voltage electrostatic field across electrodes

Applications

• Space Propulsion
 – Launch: from “planetary” body to orbit
 – Orbit Insertion: from launch orbit to mission orbit
 – Maneuvering: maintain or change orbit or trajectory
 – Attitude Control: orientation of vehicle

• Aircraft Propulsion
 – High thrust/acceleration (sustained or boosters)
 – High speed flight (> ramjet/scramjet capability)
Chemical Rockets

• **Common Applications**
 – Usual choice for high thrust rockets, e.g., launch, orbit change, aircraft propulsion
 – Also used for maneuvering and attitude control

• **Monopropellants vs. Bipropellants**
 – Monopropellants (no separate fuel and oxidizer, e.g., hydrazine)
 – Bipropellants (e.g., hydrocarbon/oxygen, hydrogen/oxygen, nitrogen tetroxide/monomethyl hydrazine)

Chemical Rockets (continued)

• **Propellant Types**
 – **Gas** rockets: fuel/oxidizer stored as gases – requires large storage volumes
 – **Liquid** rockets: stored as liquids – more complex but high impulse
 – **Solid** rockets: propellant is solid – lower impulse but simpler
 – **Hybrid** rockets: usually solid fuel+liq./gas oxidizer

• **Motors vs. Engines**
 – **Motor** = propellant stored inside comb. chamber
 – **Engine** = storage outside combustion chamber
Other Rockets: Applications

• Pressure (cold gas)
 – attitude control + maneuvering: reduced thrust as pressure used up, rendezvous

• Electrical
 – Arcjet thrusters - maneuvering + attitude control
 – Ion engines - space propulsion

• Future systems
 – Nuclear thermal: like chemical rockets with nuclear-based heat addition, high thrust?
 – Magnetoplasmadynamic and other electrodynamic devices, high impulse

Non-Rocket Space Propulsion

• Combined Cycles: typically combine air-breathing with rocket cycles for single-stage to orbit (SSTO)
• Solar sails: use momentum from solar radiation
• Magnetic sails: use magnetic fields
• Tethers: conducting material moving through EM fields can produce currents/voltages or passing current through tether can produce forces
• Gravity assist: sling shot effect
• Warp drive…..