

Mach Angle and Mach Number

- Looking for relationship between speed of sound and flow speed (or speed of body moving through fluid)
- Consider small body (point) moving in stagnant fluid
 - continuously "launches" weak pressure disturbances (e.g., from "pushing" fluid)
- Disturbances travel outward spherically at sound speed (a)
- Look at disturbances generated at equally spaced time intervals
- Start with body moving with <u>v<<a</u>
 - e.g., nearly stationary or moving through incompressible liquid

Subsonic and Supersonic Motion

 Now compare two bodies, one moving with v<a, subsonic other body moving with v>a, supersonic

- Subsonic body always behind sound waves launched from previous positions
- Supersonic body moves ahead of previous sound waves

Mach Wave and Mach Angle

- For supersonic flow, can define region where disturbance has had an effect (been "heard")
- <u>Conical region</u> delineated by <u>tangents</u> to sound wave spheres
- Waves coalesce at edge of cone, produce largest disturbance
 - Mach wave (Mach line)
- Angle between Mach line and body motion, Mach angle

$$\mu = \sin^{-1}\left(\frac{at}{vt}\right) = \sin^{-1}\left(\frac{a}{v}\right)$$

Mach Cone and Shock Waves

• Change frame of reference, now let body be stationary and flow is moving

- Weak disturbances from presence of body
 - can only be felt insideMach cone
 - can not be felt upstream
- Strong pressure disturbances

 (nonisentropic) can occur,
 they coalesce to form
 shock waves β≥μ

Mach Number

- So flow/body speed relative to sound speed is fundamental ratio
- Mach number

$$\mathbf{M} \equiv \frac{\mathbf{V}}{\mathbf{a}}$$
 (VI.3)

named for Ernst Mach, $M \equiv \frac{V}{a}$ (VI.3) named for Ernst Ma Austrian ~1870

In terms of Mach number, the Mach angle is

$$\mu = \sin^{-1} \left(\frac{1}{M}\right) \quad (VI.4)$$

Loose demarkation of flow regimes (M_∞=v_∞/a_∞)

$M_{\infty} < 0.3$	"incompressible"	Δρ<5% effect
$0.3 < M_{\infty} < 0.8$	subsonic	ρ changes with v
$0.8 < M_{\infty} < 1.2$	transonic	shocks for M>1
$1.2 < M_{\infty} < 3$	supersonic	stronger ρ changes
3 <m<sub>∞</m<sub>	hypersonic	very strong shocks

Adiabatic Flow Ellipse

- Another way to look at M effects
- Energy equation $h_o = h + \frac{v^2}{2} = const$

Stagnation T_o also constant (thermally & calor. p.g.)

$$T_{o} = T + \frac{\gamma - 1}{2} \frac{v^{2}}{\gamma R} = const$$

$$\frac{2}{\gamma - 1} \gamma RT + v^{2} = const$$

$$\frac{2}{\gamma - 1} a^{2} + v^{2} = v_{max}^{2} = \frac{2}{\gamma - 1} a_{o}^{2}$$
(VI.5)

Maximum velocity possible (no thermal energy left, T=0)

Adiabatic Flow Ellipse (con't)

• Transition from low speed (a_o) to high speed (v_{max})

incomp.	v< <a, a(t)<="" change="" da<<dv,="" in="" little="" th=""></a,>	
subsonic	v≤a, M changes primarily to changes in v	
transonic	v-a << v,a	
supersonic	v>a, M changes through substantial changes in v and a(T)	
hypersonic	v>>a, dv< <da, a(t)="" change="" changes<="" due="" m="" mostly="" th="" to=""></da,>	