Module J

Trade Study Process
Trade Study Objectives

• Support the decision needs of the system engineering process
• Evaluate alternatives (requirements, functions, configurations)
• Integrate and balance all considerations (cost, performance, producibility, testibility, compatibility, supportability, etc)
• Develop and refine a system concept
• Determines if additional analysis, synthesis, or trade-off studies are required to make a selection

Trade studies support selection of the best or most balanced solution
Purposes of Trade Study

• Trade studies - General
 – Identify and execute trade-offs among requirements, design, schedule, and cost
 – Support decision needs of system engineering process
 – Level of study commensurate with cost, schedule, performance, and risk impact

• Requirements analysis trade studies
 – Establish alternative performance and functional requirements
 – Resolve conflicts between requirements

• Functional analysis/allocation trade studies
 – Support functional analysis and allocation
 – Determine preferred set of requirements for function interface
 – Determine requirements for lower-level functions
 – Evaluate alternative architectures

• Synthesis trade studies
 – Establish system/CI configurations
 – Assist in selecting system concepts and design
 – Select HW/SW, make or by, examined proposal changes, etc.

• System/cost effectiveness analysis
 – Develop MOEs hierarchy
 – Identify critical MOEs as TPMs
Trade Study Guidelines

• Boeing Systems Engineering Manual
 – Disciplined process
 – Fair and consistent evaluations
 – All affected aspects of program participate
 – Trade study leader to help focus and coordinate

• DSMC Systems Engineering Fundamentals
 – Formal decision analysis method
 – Solve complex problems with more than one selection criterion
 – Provide documented decision rationale
Value of Trade Study Process

- Systemization of thought
- Clarification of options, problem structure, and available trade-offs
- Improved communication of ideas and professional judgement within the organization
- Improved communication of rationale for action to others outside the organization
- Confidence that all available information has been accounted for in a decision
Trade Study Functions in Each Acquisition Phase

<table>
<thead>
<tr>
<th>Acquisition phase</th>
<th>Trade study emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Concept Exploration</td>
<td>• Compare alternative sets of requirements to see how they meet general customer needs</td>
</tr>
<tr>
<td>Concept Exploration and Definition</td>
<td>• Compare technologies and approaches</td>
</tr>
<tr>
<td></td>
<td>• Evaluate concepts for meeting mission needs</td>
</tr>
<tr>
<td></td>
<td>• Select alternate system configurations</td>
</tr>
<tr>
<td>Program Definition & Risk Reduction</td>
<td>• Select preferred technologies</td>
</tr>
<tr>
<td></td>
<td>• Reduce alternatives to a testable number</td>
</tr>
<tr>
<td>Engineering & Manufacturing Development</td>
<td>• Select component/part designs</td>
</tr>
<tr>
<td></td>
<td>• Select testing methods</td>
</tr>
<tr>
<td></td>
<td>• Select support processes</td>
</tr>
<tr>
<td>Production & Deployment</td>
<td>• Examine advantages of proposed design changes</td>
</tr>
<tr>
<td></td>
<td>• Evaluate new mission requirements</td>
</tr>
<tr>
<td></td>
<td>• Assess incorporation of new technologies</td>
</tr>
</tbody>
</table>

Trade study emphasis areas change throughout the acquisition process
Trade Study Process Key Elements

Define the problem

Establish evaluation criteria

Develop alternative solutions

Screen alternatives

Quantify downselected alternatives
- Performance
- Weight
- Reliability
- Producibility
- Safety
- Etc

Order alternatives relative to criteria

Prepare Trade Study Report

Scope of application of any one step will vary depending on a program’s current acquisition phase
Trade Study Process Flow

1. Define objectives and requirements
2. Formulate evaluation criteria
3. Identify alternative configurations
4. Select configurations
5. Weigh the criteria
6. Prepare utility functions*
7. Quantify evaluation criteria
8. Evaluate alternatives
9. Perform sensitivity checks
10. Execute decisions

Develop costing functions

* Software tool is available
QFD Identifies and Supports Trade Studies

- The correlation matrix identifies the relationship between the HOWs

Correlation Matrix

<table>
<thead>
<tr>
<th>HOW vs HOW</th>
<th>Strong positive</th>
<th>Positive</th>
<th>No relation</th>
<th>Negative</th>
<th>Strong negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong positive</td>
<td>Positive</td>
<td>No relation</td>
<td>Negative</td>
<td>Strong negative</td>
<td></td>
</tr>
</tbody>
</table>

IPTs identify the conflicts or synergies between each of the HOWs in the roof of the house of quality
Establishment of Effective Evaluation Criteria

- Must reflect all technical requirements
- Must reflect business objectives
- Must be closely linked to TPMs
- Effective screening/evaluation criteria must:
 - Differentiate meaningfully between alternatives without bias
 - Relate directly to the purpose of the trade study, i.e., they are requirements based
 - Be broadly based to ensure coverage of all decision factors
 - Be independent of each other to the greatest degree possible
 - Be universally understood by all trade study participants
Example of Evaluation Criteria

- Life Cycle Cost
- Supportability
- Performance

<table>
<thead>
<tr>
<th>Formulate</th>
<th>Quantify</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Weight</td>
<td>a. Weight = 565 lb</td>
</tr>
<tr>
<td>b. Power</td>
<td>b. Power = 32 kW</td>
</tr>
<tr>
<td>c. Accuracy</td>
<td>c. Accuracy = 2 m</td>
</tr>
<tr>
<td>d. Size</td>
<td>d. Size = 2 ft³</td>
</tr>
<tr>
<td>e. Cost</td>
<td>e. Cost = $1.2M</td>
</tr>
<tr>
<td>f. Schedule</td>
<td>f. Schedule = 3.5 yr</td>
</tr>
<tr>
<td>g. Risk</td>
<td>g. Risk = Medium</td>
</tr>
<tr>
<td>h. Testability</td>
<td>h. Testability = 99% FD/FI</td>
</tr>
<tr>
<td>i. Supportability</td>
<td>i. Supportability = 3 tools</td>
</tr>
<tr>
<td>j. Complexity</td>
<td>j. Complexity = Medium</td>
</tr>
<tr>
<td>k. Reliability</td>
<td>k. Reliability = 500 hr MTBF</td>
</tr>
<tr>
<td>l. Maintainability</td>
<td>l. Maintainability = 0.5 MMH/FH</td>
</tr>
<tr>
<td>m. Safety</td>
<td>m. Safety = 99.999%</td>
</tr>
</tbody>
</table>
Sources of Design Trade Study Decision Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Objectives</td>
<td>• Program management business plan</td>
</tr>
</tbody>
</table>
| **Mission Area Analysis** | • Service mission roles
• Mission area plans (MAPS)
• Voice of the customer |
| **Concept Exploration** | • Justification for major system new start -Mission Need Statement (MNS)
• System performance requirements
• Acquisition decision memorandum |
| **Program Definition & Risk Reduction** | • Operational requirements Document (ORD)
• System specification
• Test and evaluation master plan
• Technical Performance Measurements (TPMs)
• Planning, programming, and budgeting system documentation |
| **Engineering & Manufacturing Development** | • Configuration Item Specifications (CIS)
• Requirements Allocation Document (RADs)
• TPMs
• Integrated program Summary
• Planning, programming, and budgeting system documentation |
| **Production & Deployment** | • Existing technical manuals
• Logistics plan
• Production plan
• Fielding plan |
Identification of Alternatives

• Reflect widest range of different solutions
• Sources include:
 – Predetermined, competitive bids
 – Developed
 • Customer
 • Synthesis
 • Brainstorming, all disciplines
 • QFD
 • Experience
 • Suppliers
Identification of Alternatives

Most tradeoffs occur in this region where decisions are difficult.

Cost target (goal)

Minimum acceptable effectiveness

Maximum limit of affordability

Effectiveness goal

Cost

Effectiveness
Screen Alternatives

- Eliminate alternatives which do not appear to meet requirements (go/no-go tests or killer trades)
- Eliminate alternatives with low probability of successful implementation
- Eliminate alternatives which are expected to exceed cost and schedule constraints
Example of Uncoupling and Killer Trades

SOW Task: • Evaluate and select propulsion subsystem for long range conventional cruise missile

System Req’ts: • Range 2,000 NM
 • Launcher-ship VLS, be compatible and maintain commonality
 • All other requirements held constant (e.g. lethality)

<table>
<thead>
<tr>
<th>Propulsion subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>Range, NM</td>
</tr>
<tr>
<td>Meets reqt</td>
</tr>
</tbody>
</table>

• Uncoupling allowed looking at propulsion subsystem only
• Killer trade reduced concepts from 10 down to 3 for more detailed analysis
Quantify Downselected Alternatives

- Performance
- Weight
- Reliability
- Producibility
- Safety
- Affordability
- Schedule
- Risk
- Etc
Sample Criteria Weighting

Mission capability
- Speed & endurance
 - Speed at max power
 - Endurance at 27 kts
- Logistics/R&M
- Cargo capacity
 - Max tank condition
 - No. of tanks
 - No. of vehicles
 - No. of containers
 - Max helo condition
 - No. of helos
 - No. of vehicles
 - No. of containers
- Safety
- Cargo capability
 - Pierside
 - In-stream
Sample Prioritization Input Sheet

SL-7 CLASS CONVERSION TRADE-OFF STUDIES PRIORITIZATION SURVEY

WHAT IS YOUR OPINION AS TO WHICH MISSION CAPABILITY ATTRIBUTE IS MORE IMPORTANT TO MISSION SUCCESS?

|----------------------------|---|----------------------------|
Sample Utility Curves

1. Score vs. MTBF (hr)
2. Score vs. Air alignment time (hr)
3. Score vs. In-flight accuracy (CEP drift rate, NM/hr)
4. Nuclear hardness vs. Max
5. 1st prod del vs. IOC
Sample Weighted Summary Table

<table>
<thead>
<tr>
<th>Criteria [weight]</th>
<th>Alternatives</th>
<th>Score</th>
<th>Weighted score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Score</td>
<td>Weighted score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A [15]</td>
<td>Alternative 1</td>
<td>3.1-3.5</td>
<td>46.5-52.5</td>
<td>4.2-5.9</td>
<td>63.0-88.5</td>
<td>6.0-6.5</td>
<td>90.0-97.5</td>
<td>3.5-5.2</td>
<td>52.5-78.0</td>
<td>4.5-5.0</td>
<td>60.0-82.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B [20]</td>
<td>Alternative 2</td>
<td>3.9-4.6</td>
<td>78.0-92.0</td>
<td>7.8-8.2</td>
<td>156.0-164.0</td>
<td>8.9-9.2</td>
<td>178.0-184.0</td>
<td>6.4-6.9</td>
<td>128.0-138.0</td>
<td>7.6-8.1</td>
<td>152.0-162.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [10]</td>
<td>Alternative 3</td>
<td>5.2-6.0</td>
<td>52.0-60.0</td>
<td>4.3-6.0</td>
<td>43.0-60.0</td>
<td>7.0-8.2</td>
<td>70.0-82.0</td>
<td>7.3-8.5</td>
<td>73.0-85.0</td>
<td>9.2-9.5</td>
<td>92.0-95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D [35]</td>
<td>Alternative 4</td>
<td>9.0-9.5</td>
<td>315.0-332.5</td>
<td>7.0-7.3</td>
<td>245.0-255.5</td>
<td>8.5-9.0</td>
<td>297.5-315.0</td>
<td>9.7-9.9</td>
<td>339.5-346.5</td>
<td>6.7-7.2</td>
<td>234.5-252.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E [20]</td>
<td>Alternative 5</td>
<td>5.0-6.7</td>
<td>100.0-134.0</td>
<td>3.5-4.5</td>
<td>70.0-90.0</td>
<td>5.0-6.0</td>
<td>100.0-120.0</td>
<td>6.9-7.2</td>
<td>138.0-144.0</td>
<td>7.8-8.2</td>
<td>156.0-164.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>591.5-671.0</td>
<td>577.0-658.0</td>
<td>735.5-798.5</td>
<td>731.0-791.5</td>
<td>694.5-755.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction
 – Problem description
 – Ground rules/assumptions
 – Constraints

2. Concepts
 – Range of options
 – Procedure used
 – Drawings/data sheets

3. Downselected alternatives
 – Screening/downselection process
 – Evaluation criteria
 – Weighting factors
 – Results of screening

4. Quantified technical impact
 – Detailed studies
 – Additional assumptions
 – Additional analysis

5. Conclusions and recommendations
 – Reasoning
 – Additional recommendations
Trade Study Product Characteristics

In order to meet customer quality requirements, each Trade Study conducted within Product Definition is expected to be characterized by a consistent set of elements which include . . .

- Clear problem statement
- Identification of requirements that must be achieved
- Ground rules and assumptions
- Decision criteria
- Resource requirements statement (source/man hrs reqd)
- Schedule to accomplish (proposed and actual)
- Potential solutions and screening matrix
- Comprehensive array of feasible alternatives
- Comparisons of alternatives using decision criteria
- Technical recommendation of trade study leader
- Documentation of decisions leading to recommendation
Why Do Trade Studies?

Have all the alternatives been considered?
The Name of the Game - Trade-Offs

- Performance requirements
- Technical parameters
- Schedule
- Maintainability
- Reliability
- Cost
- Productibility