Onboard Autonomous Control of Advanced Spacecraft Systems

Behçet Açıkmeşe

Presented by: Andrew E. Johnson

Jet Propulsion Laboratory
California Institute of Technology
Advanced Spacecraft Systems Requires Onboard Autonomous Control

Comets/Asteroids

Planetary Landing

Onboard Autonomous Control

Fuel/power efficiency
Constraints
Uncertainties

Onboard real-time complex GN&C decision making

Swarms

Formation Flying

Pre-decisional - for Planning and Discussion Purposes Only
Challenges in Advanced Spacecraft Control

- High performance control is needed for
 - Planetary pinpoint landing
 - Formation flying interferometry

- Fuel, power, or time optimality is needed for
 - Increased accuracy or payload mass for planetary landing
 - Long science observation times for formation flying observatories

- Performance must be achieved under uncertainties in
 - Spacecraft dynamics
 - Environmental disturbances
 - Sensor measurements
 - Actuators
 - Operational environment

- Spacecraft must operate under severe constraints on
 - Spacecraft dynamic states
 - Controls
 - Onboard resources
 - Mission duration
Advanced Spacecraft must be Autonomous

- Advance spacecraft must autonomously take control actions to meet these challenges
- The control computations must be performed by limited onboard computational resources
- In formation flying, these decisions must be coordinated autonomously

Increased autonomous control enables
- New and exciting science missions
- Significantly reduce operational costs and time for more traditional space missions
Convex Optimization Framework in Autonomous Spacecraft Control

GN&C problems with constraints, nonlinearities, and uncertainties

- Constrained Optimization -

Convexification

Enables

Verifiable Real-Time Convex Optimization

Rapid and robust optimal solution via IPMs

Onboard Autonomous GN&C
Convex Optimization Framework in Autonomous Spacecraft Control

GN&C problems with constraints, nonlinearities, and uncertainties

- Constrained Optimization -

Convexification

“Lossless” Convexification e.g. Planetary Landing

Enables

Verifiable Real-Time Convex Optimization

Onboard Autonomous GN&C

Rapid and robust optimal solution via IPMs
Convexity Enables Reliable Automated Solutions

Non-Convex Optimization

- Non-Convex cost
- Non-Convex constraints
- Requires expert in the loop

Convex Optimization

- Convex cost
- Convex constraints
- Guaranteed global optimum
- Polynomial-time complexity
- No human in the loop need

Sequential QP, Thrust Region methods, Simulated Annealing, Genetic Prog. ...

IPMs (Interior Point Methods)

- No guarantees of convergence or exponential complexity
- Guaranteed global optimum
- Polynomial-time complexity

Pre-decisional - for Planning and Discussion Purposes Only

Tuesday, June 19, 2012
Convexity Enables Reliable Automated Solutions

Non-Convex Optimization

Convex Optimization

Convexification

Main contribution

Sequential QP, Thrust Region methods, Simulated Annealing, Genetic Prog. ...

- No guarantees of convergence or exponential complexity

Requires expert in the loop

IPMs (Interior Point Methods)

- Guaranteed global optimum
- Polynomial-time complexity

No human in the loop need

Convex cost

Non-Convex cost

Convex constraints

Non-Convex constraints

f(x,y)

x

y

f(x,y)

x

y

Tuesday, June 19, 2012
What is Convexification?
What is Convexification?

Non-convex Problem

\[f(x,y) \]

Convex cost

Non-Convex constraints
What is Convexification?

Non-convex Problem

Convex Problem

CONVEXIFICATION

Reduction

- In general, leads to suboptimal solutions
What is Convexification?

Non-convex Problem

Convex cost

Non-Convex constraints

Convex Problem

CONVEXIFICATION

Reduction

- In general, leads to suboptimal solutions

Relaxation

- It can lead to infeasible solutions
- If we can ensure optimal for the relaxed is feasible for the original, then we have lossless convexification

Tuesday, June 19, 2012
An Important Example for Convexification: Planetary Pinpoint Landing

Entry Phase

Parachute Phase

Powered Descent (PD) Phase

Error accumulated in and entry parachute phases

5-6 km

Divert distance

Landing location

Would enable

Pre-decisional - for Planning and Discussion Purposes Only

Tuesday, June 19, 2012
An Important Example for Convexification: Planetary Pinpoint Landing

Entry Phase

Parachute Phase

Powered Descent (PD) Phase

Landing error
< 1-2 km for Precision Landing
< 0.1 km for Pinpoint Landing

Would enable
- Sample return
- Access to more sites
- Human missions

Artist’s concept

MSL landing ellipse

Sample return
Access to more sites
Human missions

Tuesday, June 19, 2012
Relaxed Problem and Lossless Convexification
Relaxed Problem and Lossless Convexification

Minimize fuel s.t.:
- Dynamics, initial and final conditions
- State constraints

\[
\dot{m}(t) = -\alpha \Gamma(t),
\]
\[
\|T_c(t)\| \leq \Gamma(t), \quad 0 < \rho_1 \leq \Gamma(t) \leq \rho_2
\]

Introduce slack variable
Relaxed Problem and Lossless Convexification

Minimize fuel s.t.:
- Dynamics, initial and final conditions
- State constraints

\[m(t) = -\alpha \Gamma(t), \]
\[\|T_c(t)\| \leq \Gamma(t), \quad 0 < \rho_1 \leq \Gamma(t) \leq \rho_2 \]
Relaxed Problem and Lossless Convexification

Minimize fuel s.t.:
- Dynamics, initial and final conditions
- State constraints

\[
\dot{m}(t) = -\alpha \Gamma(t),
\]
\[
\|T_c(t)\| \leq \Gamma(t), \quad 0 < \rho_1 \leq \Gamma(t) \leq \rho_2
\]

Proofs in:
Acikmese & Ploen, JGCD 2007
Blackmore & Acikmese, JGCD 2010
Acikmese & Blackmore, Automatica, 2011

Both problems have same optimal solution!

Pre-decisional - for Planning and Discussion Purposes Only
Algorithm-to-Flight Development Status

2004

- **Core idea developed**
 - Lossless convexification of the optimal control problem

2005

- **1st G-FOLD release**
 - 2-3 secs per trajectory computation
 - Automated use in Monte-Carlo sims
 - Successfully executed 100s of thousands of times

2010

- **Real-Time Version Development Started**
 - Table look-up: < 100 mili-sec
 - Custom real-time implementation: < 300 mili-sec

2012

- **ADAPT, Autonomous Descent/Ascent Powered flight Testbed, would demonstrate G-FOLD via a free-flyer experiment**

G-FOLD: Fuel Optimal Large Divert Guidance algorithm

Pre-decisional - for Planning and Discussion Purposes Only

Tuesday, June 19, 2012
Autonomous Spacecraft Swarms

1,000s of autonomous agents for
- Ultra large distributed space apertures
 - R/F microwave array
 - Very large antennas
- Decoys at Earth orbit
- Distributed surveillance
- Distributed sensors

Control Challenges:
- Swarm deployment
- Swarm keeping/control
- Swarm guidance
- Swarm density estimation
Proximity Control for Comets and Asteroids

Robust controllers for uncertain/nonlinear systems with state and control constraints

- Successive convexification
 - solves in seconds
 - current methods in hours
- Model Predictive Control (MPC)
 - Robust to model uncertainties
 - Resolvable, continuous feasibility
 - Inherent constraint satisfaction
- LMI based feedback control synthesis for incrementally conic systems

Acikmese, Carson, & Bayard, *Int. Jnl. of Robust and Nonlinear Control*, 2010
Acikmese & Carson, ACC, 2006
Carson, Acikmese, Murray, McMynowski, IFAC, 2008
References

Thanks!

Behçet Açıkmeşe
behcet@jpl.nasa.gov